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Abstract: D-ribonolactone derived acyclic alkenyl iodides were treated with 
samarium(H) iodide in THF/MeOH/HMPA at low temperature. Highly functionalized 
carbocycles are formed if the iodide is tethered to an allylic alcohol, an allylic acetate or 
an ct, 13 - unsaturated t-butyl ester. The chemoselectivity and diastereoselectively of 
these transformations vary with the solvent system and with the reaction temperature. 
© 1997, Elsevier Science Ltd. All rights reserved. 

Samarium(II) iodide is a useful reagent for the formation of carbon-carbon bonds by radical or carbanionic 
processes, l We have used SmI2 to form carbocyclic compounds from simple alkynyl halides 2 and, in this letter, 
we describe the reactions of some D-ribonolactone derived acyclic alkenyl iodides with SmI2 and Bu3SnH. 3- 7 

The synthesis of our acyclic alkenyl iodides (Scheme 1) was based on a strategy used by Wilcox and 
Thomasco. s Compound 1 was prepared from o-ribonolactone via a protection s, iodination 9 and reduction s 
sequence and then reacted with the stabilized Wittig reagents 2 and 3.1° Reaction of I with ylide 3, to give 5a 
(86%) and 5b (11%), was the cleaner of the two transformations.11 The cis ester 5a was used to prepare 6a and 
7a and the t rans  ester 5b was used to prepare 6b and 7b. 
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Scheme 1: (a) See Reference 8; (b) Ph3P, imidazole, 12, CH2C12; 74%; (c) DIBAL-H, CH2CI2,-78°(2; 86%; (d) 
DIBAL-H, THF, -78°Ct2: 6a [73% from 5a], 6b ( 76% from 5b); (e) Ac20, NEt3, DMAP, CH2C12, 

-78°C to rt13: 7a [ 95% from 6a],7b [93 % from 7b]) 4 

Upon exposure to 3 equiv of SrnI 2 in THF at rt (1 h), 4a undergoes a reductive cleavage of the c a r b o n  - 

o x y g e n  bond at the T-position to give the ~, T -unsaturated ester 8 (42%)) 5 The formation of this product is 
consistent with an organosamarium reaction intermediate. 15 We found no evidence for carbon-iodine bond 
reduction under these conditions. Substrate 5a also reacts with SmI2 in THF/MeOH at rt to give 9 (44%). We 
observed a dramatic change in chemoselectivity when HMPA and MeOH are used as cosolvents and when the 

1153 



1154 

reaction temperature is lowered. Interestingly, reaction of 5a with 4 equiv of SmI 2 in THF/MeOH/HMPA at low 

temperature (-78°C, 4h; 0°(2, 50 mill) 16 gives the cyclized product 10 in 70% yield. We saw none of the y- 
deoxygenation under these conditions. The SmI2 mediated cyclization compares well with the corresponding 
BuaSnH mediated radical cyclization. 5 Slow simultaneous addition of 1,2 equiv of Bu3SnH and 0.12 equiv of 
AIBN over 3.5 h to a refluxing solution of 5a in benzene (final concentration: ca. 0.015 M, reaction time: 4 h 
total) gave compound 11 (18%) in addition to compound 10 (36%). 17'18 

Scheme 2 

I 

C ~ / e C  ~ , ~  R = tBu: 9 H3 H2CO2tBu HO ...... 
CO2R 

- \ O . ~ H O  ...... CO2R } 
... H(~ HO ....... CO2tBu 

b [ / \ 
0 10 ,1 oz 

The diacetates 7a and 7b react with 5 equiv of SmI 2 in THF/HMPA/MeOH at low temperature (-78°C 
2h; 0°C 1.3h) in a stereodivergent manner to give vinylcyclopentane compounds 12 and 13. The Z isomer 7a 
gave 12 (76 %) as the major reaction product together with a little of the diastereoisomer 13 (6%). The 
reaction with the E isomer 7b gave 12 and 13 in 25% and 65% yield respectivelyJ 8 The corresponding 
Bu3SnH reactions are less diastereoselective and lead to the formation of different products. When 7a is 
treated with Bu3SnH/AIBN under reflux conditions overnight we isolated the I~l-diacetate 14 (59%) and the t~- 
diacetate 15 06%). The reaction of 7b with Bu3SnH and AIBN gave 14 and 15 in a 1:1.7 ratio. 

Scheme 3 
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The o-iodo (Z) allylic alcohol 6a also cleanly reacts with SmI2 in THF/HMPA/MeOH under low 

temperature conditions to exclusively give the diastereoisomer 16 (51%) 19 together with some unreacted 

starting material (30%). The reaction was incomplete under these conditions but attempts to push the reaction 

to completion, by running it at rt in TFIF/MeOH, resulted in a poorer mass balance and in the isolation of 

compounds 16, 17, 18 and 6a from the reaction mixture. 

Our interpretation of these results is summarized in scheme 4. The reaction of 7a and 7h with Bu3SnH 

or SmI2 involves formation of the primary alkyl radical 19 and a 5-exo cyclization then gives the cyclized 

secondary radical 20. In the SmI2 reactions, reduction of the cyclized radical by a second equivalent of SmI2 

gives an organosamarium species which then undergoes l-elimination to give vinylcyclopentanes. 2° In the tin 

hydride reactions, the cyclized radical abstracts a hydrogen atom from Bu3SnH to give compounds 14 and 15. 
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The acyclic I~-elimination compound 18 is formed when the acyclic primary radical 19 is reduced to the 

corresponding organosamarium species before it can cyclize. 21 Compound 18 is not formed when the 

reactions are run under the low temperature conditions in THF/HMPA/MeOH. 

We are continuing our work with other carbohydrate derived substrates in order to determine the 

generality of these reactions. 

Scheme 4 
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